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Let M be a differentiable manifold modeled on a Banach space over K = R or  
C. Let Tk(M) be the kth iterated tangential extension of  M, and let kM be the kth 
B o w m a n  (= restricted tangential) extension of  M. It is shown that there is an 
embedding ~0k: kM --~ Tk(M), and that such embeddings constitute a natural 
transformation of  functors. Let Q be a subset/submanifold in Tk(M), and let V: 
Q --~ T(Q) be a differentiable vector field. Call V k-suitable if every K-curve g 
in Q satisfying g '  = v o g has the form g = ftkl, where f[~l denotes the kth 
iterated differential lift o f  a K-curve f in M. It is shown that V is k-suitable if 
and only if: (a) Q = q~k(Q), where Q is a subset/submanifold in kM, and (b) V 
= T(qo D o ~ o q~- i, where V: Q ---> T(Q) is k-suitable relative to restricted tangential 
K-curve lifts f~k). Interpretive consequences for motion problems are discussed. 

INTRODUCTION 

There are two tangential resolutions for a differentiable manifold M 
modeled on a Banach space over the scalar field K ( = R  or C). One is the 
familiar full tangential resolution (Tk(M), 7rk)k_>0, where T~ = M and 
where rrk: Tk§ = T(Tk(M)) ---> Tk(M) is the standard tangent bundle 
projection. The other is the Bowman (=restricted tangential) resolution (kM, 
~r k, J, k~r)k>_O. [See Bowman (1970a,b) for the original presentation of the 
latter idea over general manifolds. See Bowman and Pond (1975) for a 
treatment when M = G is a differentiable group, especially when G is a 
classical group of continuous linear invertible transformations on a Banach 
space.] Each context has its own notion of  successive differential lifts of  K- 
curves f ly ing in M (which we denote, respectively, b y f  tkl andf(k)). Moreover, 
both Tk(.) and k(.) are functors in the category of  manifolds. 
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In Pond (1997) it is shown, both from general theory and from numerous 
examples, that the full tangential context T*(M) is not the appropriate frame- 
work for consideration of higher order differential lift equations defined by 
vector fields. In this paper: 

(1) A rigorous embedding linkage is established from the k(.) context 
to the Tk(') context. 

(2) Subject to (1), it is shown that every differential lift equation formu- 
lated in the Tk(.) context that can reasonably be said to be of higher order 
can be formulated and fully treated in the (simpler) k(.) context. 

While this paper is concerned with structure-in-the-large rather than 
with examples (the latter occur in a serious way over differentiable groups 
and over zero-set manifolds), generic examples are presented to show that 
the k(.) context "makes sense" from the viewpoint of physical problems, 
whereas the Tk(.) context does not. 

Before beginning the development outlined above, there is a technical 
difficulty concerning embeddings in general Banach manifolds that does not 
arise in the finite-dimensional context. For instance, if A and B are Banach 
spaces with A a Banach subspace of B, there is no general reason to suppose 
that the inclusion map i: A ---) B is an embedding map. Specifically, there is 
no reason to suppose that every intrinsically differentiable K-valued function 
on an open set in A is locally expressible as the restriction of differentiable 
functions on open sets in B. Even worse from the viewpoint of differential 
lift equations, if N and P are differentiable manifolds modeled on Banach 
spaces and if q~: N --) P is an embedding, there is no general reason to 
suppose the tangent map T(q~): T(N) ---) T(P) is again an embedding. The 
latter phenomenon makes differentiable "pullbacks" of curve lifts and vector 
fields problematic. The useful notion of embedding in the Banach framework 
appears to be the following: 

Definition. Let qo: N ~ P be differentiable. Call qo a strong embedding 
if, for each x ~ N, there is an open U about q~(x) and a differentiable "r: U 
---) N such that "r o q01~-~(v) = idl~-~(to. 

One can easily show (we will not prove) the following: 

Facts: (a) If tO is a strong embedding, then so is T(~p). 
(b) A composition of strong embeddings is a strong embedding. 
(c) A strong embedding is an embedding. 
(d) If qo: N ---) P is an embedding with N finite-dimensional, then q~ is 

a strong embedding. 

The full tangential context (Tk(M), ar~)k~_0 is well known, namely, T~ 
= M, and ark: T~§ = T(T~(M)) --) Tk(M) is the standard tangent bundle 
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projection. However, it is useful to define the following sequences of sets 
(kM')k_>0 and (kM)k~0: oM' = T(M), and 

(k-> 1) kM'  = {x e Tk+t(M): 

0 --< j ----- k - 1 implies Tk-J(Try)(x) = T(Trk-1)(X)} 

Then set 0M = M, set I M = T(M), and 

(k --- 1) k+lM = {x ~ kM': T('trk-l)(x) = "rrk(x)} 

One has the following result. 

Proposition 1 (k -> 0). (1) xr k carries kM' into kM. 
(2) If q~: N ---> Tk(M) is differentiable and lies entirely in kM, then T(q~): 

T(N) --+ T(Tk(M)) = Tk+l(M) lies entirely in kM'. 
(3) For each x ~ kM' ,  there is a differentiable K-curve g in Tk(M) lying 

entirely in kM with g'(0) = x. 

Proof. We need only consider k --> 1. 
(1) Let i, j = 0 . . . . .  k - 1. One has ~r k o Tk- i (T f i )  = Tk-i-l(q'ti) o ,it k 

and xr k o T k - j ( ~ j )  = T k - J  - l(Trj ) o ,irk. Thus, Tk-i(qTi)(X)  = Tk-J ( ' f f j ) (X)  implies 
Tk-i-l('rri)(Trk(x)) = Tk-J-l('trj)('rrk(x)). For this reason, i fx  ~ kM', then "rrk(x) 
is ~ kM. 

(2) Again consider i, j = 0 . . . . .  k - 1. Since q~ lies entirely in kM, 
Tk-i-l(,tri) o q~ = Tk-J-l(,trj) o cp. Applying T to the latter equation, one has 
Tk-i(xri) o T(q0) = Tk-Y(Try) o T(q~). It follows that T(q~) lies entirely in kM. 

(3) Let M be modeled on the Banach space B. Now for each j -> 0, we 
can view TJ+I(B) as a direct product of Banach spaces: TJ+I(B) = TY(B) • 
TffB). Under this realization the tangent map "rj: TJ+l(B) = TJ(B) • TJ(B) ---> 
TJ(B) can be taken to be the direct product projection on the first (left- 
most) factor. 

Now each "rj is continuous and linear, whence, for each m --> 1, Tm(xj) 
is also continuous and linear. Indeed, 

(*) Tm(xj)(u; v) = (Tm-l('rj)(u); Tm-l(':j)(v)) 

From this it follows that both kB and kB' are themselves Banach spaces, 
being coincidence sets for families of continuous linear transformations. In 
particular, from (*), it follows that kB' = kB • kB. 

Let 0: X ---> Y be a local coordinate chart for M, with X open in M and 
Y open in B. Then 0 gives rise, for each m -> 1, to coordinate charts 

Tin(O): (,fr o 0 . . . .  , ' f l ' m _ l ) - l ( x )  ---> (,I" 0 o . . .  o , r m _ l ) - l ( y )  

and 

Tm+l (o ) :  ('fro o . . . .  , f f m ) - l ( x )  --..> (1.0 . . . .  o T m ) - l ( y )  
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for TIn(M) and Tm+l(M), respectively. For  each i = 0 . . . . .  m, 

Tm-i( ,r i )  o Tin+l(0) 

= Tm- i (T i )  o Tm- i (T i+ l (O) )  

----- Tm-i( , r i  o Ti+I(0))  

= T m - i ( T i ( O )  o qTi) -~- Tin(O) o Tm-i( , ir i )  

Because the first term in the preceding equality equals the final term, it 
follows that Tm+I(O) carries m M '  n ('fro o . . . .  ' ff,n)-l(x) onto m n '  n (,r 0 o 

. . . .  "rm)-l(Y) and vice versa, and also Tm+l(O) carries m+l M n (qT 0 . . . . .  

�9 rm)-l(X) onto m+IB n ('r 0 . . . . .  ' r m ) - l ( Y )  and vice versa. 
From the foregoing observation, it fol lows for our fixed k --> 1 that 

Tk+l(0) carries kM'  n ('rr0 . . . .  o q'[k)-l(x) onto kB' n ('r 0 . . . .  o q-k)-l(y) 
and vice versa, and also Tk(O) carries kM n ('tr0 . . . .  o -rrk_l)-l(X) onto kB 
O ('r0 . . . .  o , rk_0-1(y) and vice versa. 

Now, with x ~ kM' N ('rr0 . . . . .  q'rk)-l(X), let 

Tk+l(0)(x) = (u; v) E kB' n ('r0 . . . . .  ,rk)-l(y) 

= (kB • kB) n ('r0 . . . . .  , r k ) - l ( y )  

Let h = h(t) be the K-curve in kB given by h(t) = tv + u. Clearly, h ' (0)  = 
(h(0); d/dt[h(t)] I/=0) = (u; v). Moreover,  if t is taken sufficiently close to 0, 
h(t) is always in ('to . . . . .  a'k_0-1(Y), which is open about u. Thus, we have 
produced a differentiable K-curve h lying entirely in kB n (to . . . . .  "rk- ~)- ~ (Y) 
with h ' (0)  = (u; v). Then g = Tk(O) - l  o h meets the requirements of  the 
proposition. 

Remark. It is thus clear that, even though kM' and kM are just defined 
as sets, with no topological or differentiable structure, kM'  behaves as though 
it were the tangent bundle manifold over  kM, with the restriction of  "tr~ as 
tangent bundle projection. This is the technical key to the entire paper. In 
particular, part (3) of  the proposition is the reason, as will be seen, we 
can assert that the Bowman  tangential context  captures every higher order 
differential lift equation from the full tangential context. 

All we shall need from the Bowman context  (kM, "rr k, kl, kXr)k>_O are the 
following global details: 

(a) Each kM is a differentiable manifold, with ~ = M and IM = T(M). 
(b) "rrk: T(kM) ---> kM denotes the tangent bundle projection. 
(c) kI: k§ ~ T(kM) is a strong embedding such that 0I = idrr and 

(k --> 1) kl(k+lM) = {X E T(kM): ( k - l l  ~ axk)(x) = T(qT k - l  o k _ l l ) ( x )  } 

(d) kXr = xr k o kI .  k+l M ---> kM.  
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Let N be a differentiable manifold with Bowman resolution (kN, i~ k, k J, 
klX)k_>0, and let F: M ---> N be any differentiable map. Based solely on (a)-(d)  
it can be shown inductively that there is a sequence of differentiable maps 
kF: kM ---> kN unique with the properties that OF = F, and kJ o k§ F = T(kF) 
~ kL Moreover, as a direct calculation on these defining relations shows, klx 
o k+l F = k F o kTi." 

Let U be a nonempty open set in K, and let W: U ~ T(U)  = U • K 
be the standard vectorf ie ld given by W(t) = (t; 1). [Then, for any differentiable 
K-curve g, the differential lift of  g is the K-curve g '  = T(g) o W.] Based 
solely on (a)-(d)  it can be shown inductively that, given a differentiable K- 
curvef." U ---> M, there is a sequence of differentiable K-curves f~k): U ---> kM 
unique with the properties t h a t f  ~~ = f, and kl ~ x) = T ( f  (k)) ~ W. Moreover, 
as a direct calculation on these defining relations shows, ka'r of<k+J) = f~k). 

Definitions. Let ~: U ---> kM be a differentiable K-curve. Call g k-suitable 
if g has the form ~, = f~k), where f is a K-curve in M. 

Let Q be a subset/submanifold in kM, and let V." Q ---> T(Q) be a differenti- 
able vector field. Call ~" k-suitable if V has the property that each ~ in 
satisfying ~ = V o ~ is k-suitable. 

Proposition 2. Let k --> 1, and let ~: U ----> kM be a differentiable K- 
curve. Then g is k-suitable if  and only if T(k_l"rr) o g '  = k - l l  o g if  and only 
if ~ '  lies entirely in kl(k+tM). In this event, f = (0~ . . . . .  k-lxr ~ g). 

Proof. Let -r: T(U)  = U • K --> U denote the tangent bundle projection: 
T(t; s) = t. Now 

k - l l  o g = k_l I  o -~ o (,r o W)  = k - l I  o (g o "r) o W 

= k _ ~ I o  (or k o T ( g ) )  o W = ( k - ~ I  o .rrk) o ( T ( g )  o W )  

So the second "if and only if" assertion follows from the first by characteriza- 
tion (c) of  the embeddings kl. 

To see that the first assertion holds, assume, first of  all, that ~, = ftk). Then 

T(k_~Tr) o g '  = T ( k - l ~ r )  o T ( ~ )  o W 

= T(k_l,rt o f tk ) )  o W = T ( f  <k-l)) o W = k - l l  of<C) = k - l l  o -~ 

as asserted. 
To see the converse (including the final form for f ) ,  we argue by induction 

on k. For k = l, the assumption on ~ is that T(o~r) o T(~) o W = 0I o ~ = ~. 
That is, T(0~" ~ ~) o W = ~, which says precisely that (o'tr o ~)'  -- ~, as asserted. 
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Assume,  inductively, that the result holds for  k. Consider  ~: U ---> k+~M 
such that T(k'tr) o T ( ~ )  o W = kl  ~ -~. Then  consider the projected curve 
[kar ~ g ] :  U -~ kM. One has 

T(k-~ar) o T(tkar ~ ~1) ~ W 

= T(k-~ar) o [T(kar ) o T(g) ~ W] 

= T(k_~ar) o [~I ~ ~] = [T(k-~ar) o k/] o 

= ~ -  11  o [~ar o ~ ]  

whence,  by the inductive assumption,  [kar ~ g] = (oar . . . .  ~ k-~ar ~ [kar ~ 
g]) (k) .  But 

kI  o "~ = T(kar) o T(-~) o W = T([kar o ~]) o W 

which 

= T( (oar  . . . .  o k -~a r  o ~ar o ~)~k)) o W 

= k I  o (oar . . . . .  c t r  o g)~k+l)  

Thus, since kI is one to one, ~ = (oar ~ " ' "  ~ kar o ~)(k+~), which completes  
the inductive step and the proof  of  the proposi t ion.  

Corol lary (k  >-- 1). Let  Q be a subset /submanifold  in kM, and regard 
T(Q) as a subset in T(kM).  Let  E Q ---> T(Q) be a differentiable vector  field. 
Then V is k-suitable if  and only if T(k-l'rr) ~ V = k - l l  on Q if and only if 
V(-Q) c_ kl(k+tM). 

Proof.  The  second " i f  and only if" assertion fol lows f rom the first, since 

( k - l I  ~ rr k) ~ V = k - l I  ~ (q :  ~ V )  = k - l l  ~ id~ = k - l t  on 

As to the first assertion, assume, first o f  all, that T(k-~ar) ~ V = k-~ l  on 
Q. Let  ~ be any differentiable K-curve in Q such that ~ '  = V o ~. Then  

T(k- 1 ar'r) o ~ '  = T(~_ 1 ar) o T(~) o W = T(k- 1 ar'r) o V o g = k- 11 o g 

whence ~ is k-suitable by the proposition. 
Conversely,  assume V is k-suitable, and consider  any ~ ~ Q. By the 

fundamental  existence/uniqueness theorem (smoothness  of  ~" near  ~ being 
the only issue) there is a differentiable K-curve  ~ in Q such that ~ '  = V o 
with ~(0) = ~. Because ~ is k-suitable by assumption,  one has 

T(k-tar)(V(~))  = T(k-lar)(V(~(0)) 

= T(k-17r)(~'(0)) = k-I I(~(0)) = k- l I(~) 

Thus,  T(k-lar) ~ V = k - l l  on Q, as required. 
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We will return to the issue o f  k-suitability of  curves and vector fields 
after establishing the embedding linkage between the two tangential contexts. 
For  now, observe that the k-suitability criterion T(t_ ~ar) o V = k-~I generalizes 
the (k = 1) condition encountered in the closely related contexts o f  sprays 
and o f  Hamiltonian vector fields associated with regular Lagrangians. [See 
Ambrose  et al. (1960) for the classic development o f  the former  idea, and 
Abraham (1967) for a development o f  the latter idea.] 

Theorem 1. Let (kM, ark, kL kar)k->0 be the Bowman  resolution for the 
differentiable manifold M. Let q~0 = idM: ~ --~ T~ and, inductively, let 
q0k+l = T(tpk) o kI: k+tM --> T(Tk(M)) = Tk+l(M). 

(1) Each q~k is a strong embedding into/onto the set kM, and each T(,,0~) 
is a strong embedding into/onto the set ~M'. 

(2) For each k, q~k o kar = 'rr~ o q~k+l. 
(3) Let N be a differentiable manifold with Bowman  resolution (kN, p/, 

k J, kP0k->0, and let F: M --> N be differentiable. Let (~k)k~0 be the sequence 
of embeddings over N corresponding to the sequence o f  embeddings (q~k)k->0 
over  M. Then, for each k, t~k o k F = Tk(F) o q~k. 

Proo f  For all three assertions, only the cases k > 1 need argument. For  
the first and third assertions, the argument is inductive. 

(1) qh = T(q%) o 01 = T(idM) o idr(M) is simply an identity map, whence 
T(qh) is as well. Assume, inductively, that result (1) holds in its entirety for 
k, and consider circumstances for k + 1. To begin with, qok+ l = T(qo)k o kl is 
again a strong embedding by the preliminary facts on strong embeddings.  
Then, successively, T(qOk+l) is also a strong embedding.  

Since q0k is into kM, part (2) o f  Proposit ion 1 ensures that T(q0D is into 
kM' .  Thus, q0k+ 1 = T(q~k) o kl is also into kM' .  In fact, as we shall see, q0k§ 
is into k+lM _ kM' ,  i.e., T(ark-0 o q0k+l = ark o q0k+l. For  one has 

T(ark-0 o q~k+l 

= T(ark-l) o [T(~Pk) ~ kI] = [T(ark-1) o T(q0k) ] o kI 

= T(ark-1 o q~k) o kl = T(ark-1 ~ [T(q0k-0 o k - l / ] )  o kl 

= T([ark-I o T(~Pk-1)] o k - l / )  o kI = T([q0k-I o arlr k-l] o k - I / )  o kI 

= T(q0k_ 1 o [ark-1 o k - l l ] )  o kl = T(q0~-l) o (T[ar k-1 o k_ t I  ] o J )  

= T(q0k-1) o ( [k - l I  o ark] o kl) = (T(tPk-1) o k_ l l  ) o (arlr k o k l  ) 

= q~k o (ark o kI) = (q~k o Xr k) o kl = (ark o T(q~k)) ~ kI 

= ark o [T(q~k) o kl] = ark ~ q~k+l 

as required. 
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To see that qOk+ I is onto k§ consider any x ~ k+lM. Because x ~ k M '  
as well, part  (3) of  Proposit ion 1 ensures that there is a differentiable K- 
curve g in T k ( M )  lying entirely in t M  with g'(O) = x.  Then the embedding  
q0k, which is onto k M  by the inductive hypothesis ,  pulls g back  (uniquely) to 
a differentiable K-curve ~ in ~M such that g = q~k ~ g. 

Now x = g ' (0)  = [q0k o ~] ' (0)  = T(qok)(~'(0)). We will show that ~ ' (0)  
kI(k+lm),  whence,  with ~ ' (0)  = kI (y ) ,  it fol lows that x = (T(q~k) ~ k I ) ( y )  

= q0k+t(y). Thus,  we must  show that T(k_lTr)(~'(0)) = k-ll(-g(O)). One has 

T(~k-l)(T(k-  l 'rr)(g' (0))) 

= T(q~k-l o [k_t,rrl o ~)(W(0)) 

= T(q~k-1 ~ [Tr k - l  ~ k - l I ]  o ~)(W(0)) 

= T(tq~/-1 o q-r k-l] o k - l l  o ~)(W(0)) 

= T(['rrk-1 o T(q0k_0] o k - x l  o ~)(W(0)) 

= T('rrk_~ o [ T ( , k - 0  ~ , _ ~ l ]  o ~ ) ( W ( 0 ) )  = T('rrk_t o ~0k o ~ ) ( W ( 0 ) )  

= T('rri-i  o g)(W(0)) = T(ark - l ) [ (T (g )o  W)(0)] = T('lTk_l)(g'(O)) 

= T('rrk-1)(x) 

But we assume x ~ k§ M .  Hence,  

T('rrk-O(x) = 'rrk(X) = "rrk(g'(O)) = g(O) = qok(~(O)) 

= [T(qOk_~) o k - l I ] ( ~ ( 0 ) )  = T(q~k-1) ( [k-11  o ~](0)) 

In summary,  

T(q~ k_ 1)(T(k_ l"n')(g t (0))) = T(q) k_ l)([k- 11 o g](0))  

Thus, since T(q~k-1) is one to one, it fol lows that T(k- l ' lT)(gt (0))  ~--- k - l I ( g ( 0 ) ) ,  
as required. Hence,  q~k+l is indeed onto k+~ M. 

Finally, f rom part (2) of  Proposit ion 1, we  know that T(q~k+t) is into 
k+l M ' ,  since q0k+l is into k+lM. To see that T(q~k+l) is onto k+lM' ,  let u E 
k+lM' .  Then,  per part  (3) o f  Proposit ion 1, let h be a differentiable K-curve 
in Tk+I(M) lying entirely in k+lM with h'(O) = u. Then,  because q0k+l is an 
embedding and onto k§ M, h pulls back  (uniquely) to a differentiable K-curve  

in k+lM such that h = q0k+l o ~. Then 

T(q~k+l)(h'(0)) = (q0k+l ~ h) ' (0)  = h ' (0)  = u 

Hence, T(q0k+l) is indeed onto k+l M. This completes  the inductive step and 
thereby the proof  of  result (1). 
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(2) One has 

�9 k ~ k'rr = ~0k ~ ['rr k o kl] = [~k o ~r k] o ~I = [~rk ~ T(~k)] o kl  

= Tt k o [T(cpk  ) o k l  ] = ,ir k o q~k+l 

(3) For k = l, the result is a tautology: 

t~l ~ tF  = idr0v) ~ T(F)  = T(F)  o idr<M) = T(F)  o q~l 

Assume,  inductively, that the result holds for k, i.e., that 0k ~ kF = T~(F) 
~ q~k. Then apply T to the latter equality to obtain T(t~k) o T(kF) = Tk+1(F ) o 
T(q~O. To this equality apply k [ first to obtain 

T(~Jk) ~ T(kF) o hi = Tk+l(F) o T(q0k) o kI = Tk+l(F) o q)k+l 

On the other hand, 

T(0k) o [T(kF) o kI] = T(0k) o [kJ o m F ]  = [T(0D o kJ] o k+lF 

= 0k+l o k+l F 

Thus,  0k+l o k+* F = Tk+*(F) o q~+~, which completes  the inductive step and, 
thereby, the proof  of  result (3) and the theorem as a whole.  

Remark. Although there is no pressing need to do so, by means  of  the 
strong embeddings  ~0k and T(~k) one can transfer the tangent bundle structure 
�9 rk: T(kM) -+ kM to "ark: kM'  ---> kM and regard the latter as a strongly embedded  
linear subbundle in wk: Tk+~(M) = T(T~(M)) --> Tk(M). As the fol lowing 
section will show, however,  we can safely abandon the Tk(-) context: it is 
entirely irrelevant to the study o f  higher order differential lift equations. 

TRANSFER OF k-SUITABILITY OF CURVES AND VECTOR 
FIELDS 

In thefu / / tangent ia l  f r amework  over  a manifold M, the notion o f  succes- 
sive differential curve lifts is as follows: I f  f :  U ---> M is a differentiable K- 
curve,  t h e n f  t~ = f:  U --> T~ = M and, inductively, ftk+ll:  U ~ Tk+l(M) 
is g iven by ffk+ll(t) = (f tkl) ' ( t)  = T(ffkl)(t; 1). 

Corresponding to the notion of  k-suitabili ty in the B o w m a n  tangential  
context  (as developed in the preceding section), call a differentiable K-curve  
g in Tk(M) k-suitable i f  g has the fo rm g = ftk~, where f is a K-curve  in M. 
Similarly, i f  Q is a subset /submanifold in Tk(M) and V: Q ---> T(Q) is a 
differentiable vector  field, call V k-suitable i f  every differentiable K-curve  g 
sat isfying g '  = V o g is k-suitable. 

In Pond (1997) it is shown (Theorem 1 and its corollary, essentially) that: 
(i) Any g in Tk(M) is k-suitable if  and only if g lies entirely in kM and 

g '  lies entirely in k+~ M. 
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(ii) V is k-suitable if and only if Q c_ k M and V(Q)  c ~+l M.  
Putting the foregoing results together with Proposi t ion 2, its corollary, 

and Theorem 1 in the present  paper, we obtain: 

Theorem  2. (1) A differentiable K-curve g in T k ( M )  is k-suitable if  and 
only if  g = q)k o ~ ,  where ~ is a differentiable k-suitable K-curve in kM. 

(2) Let  Q be a subset /submanifold in T k ( M ) .  Let V: Q ---> T(Q)  be a 
differentiable vector  field. Then V is k-suitable if  and only if  Q = to~(Q) and 
V = T(q~k) ~ WV o to/-1, where  Q is a subset /submanifold  in kM and E Q --> 
T(Q)  is a k-suitable differentiable vector  field. 

P r o o f ( k  >-- 1) (1) Assume that g is k-suitable. Then,  by the result cited 
above,  g lies entirely in k M  and T('rrk_~) o g '  = g. Let  ~ be  the differentiable 
pul lback of  g to kM by tok, i.e., g = q~k o ~. Then  one has 

T(q)k_l) o [k_l I o -~] 

= [T(tok_l ) o k _ l l  ] o -~ = q)k o -~ = g 

= T('rck-i) o g '  = T(,rrk_ 1 o g)  o W = T('rrk_ l o [q0~ o g]) o W 

= T(['trk-i o ~Pk] o ~) o W = T('rrk-i o q0 D o ~ '  = T(q~k-i o k_l,.n. ) o ~ t  

= T(tok-l) o [T(k-lXr) o ~ ' ]  

Since T(q~k-l) is one to one, [ k - t l  o g] = [T(k-l'rr) o ~ ' ] ,  whence ~ is k- 
suitable by the criterion in Proposit ion 2. 

On the other hand, let ~ be k-suitable in kM,  and consider g = q~k o ~. 
One has 

T(~rk_l) o g'  

= T(Xtk_l) o [T(q~k) o ~ ' ]  

= [T('rrk-0 o T(q0k) ] o T(~) o W = T(['rr/c_ 1 o q)k] o ~) o W 

= T([q0k-1 o k-(tr] o ~) o W = T(tog-l) o [T(k_t,rr) o g ' ]  

= T(q~k-l) o [k - l l  o ~] = [T(q0k-0 o k - l l ]  o ~ = q0 k o ~ = g 

Thus,  g satisfies the criterion cited above for  k-suitability in the full tangen- 
tial context. 

(2) Assume V is k-suitable in the full tangential  context.  Then,  by the 
criterion cited above,  Q c kM. Let  Q be the subset /submanifold in kM such 
that tok(Q) = Q- Let  V: Q --> T(Q)  be the differentiable vector  field given by 
"V = T(t.pk)-! o V o tok. Clearly K-curves ~ satisfying ~ '  = V o ~ are related 
to K-curves g satisfying g '  = V o g by g = tog o ~ .  Thus,  V is k-suitable by 
result (1). 
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On the other hand, let V: Q --> T(Q) be differentiable and k-suitable, 
where Q is a subset/submanifold in kM. Let Q = ~Pk(Q), and let V'. Q ---> T(Q) 
be given by V = T(q~k) ~ V ~ q~-l. Again, K-curves g satisfying g' = V o g 
are related to K-curves ~, satisfying ~' = V o ~ by g = q~k ~ g. Thus, V is k- 
suitable in the full tangential context by result (1). 

Remark.  It is to be emphasized that the Bowman tangential context 
captures all k-suitable curves and all k-suitable vector fields from the full 
tangential context. 

Example  1. M is an open set in a Banach space B. This seemingly 
homely generic example is presented for two reasons: (a) To concretize the 
abstract development in the main body of the paper, and (b) to make the 
case that, aside from sheer mathematics, the restricted tangential context is 
"right" from the viewpoint of physical problems, whereas the full tangential 
context is not. 

Following the usual convention T(M)  = M X B to higher differential 
levels, one has Tk+l(M) = Tk(M) X Tk(B) for each k. Thus, the number of 
coordinate positions describing elements doubles as k increases stepwise--a 
circumstance hardly conducive to a succession of interpretations: instanta- 
neous position, position/velocity, position/velocity/acceleration, etc. The latter 
progression requires a simple arithmetic increase in degrees of freedom as 
k increases. 

On the other hand, the restricted tangential resolution for M is as follows: 
(a) ~ = M, while k+lM = M • B k+l. Thus, the progression ~ IM, 

2M . . . .  does admit successive interpretations: instantaneous position, position/ 
velocity, position/velocity/acceleration, etc. 

(b) The tangential projection rrk: T(kM) = kM • B k+l ---> kM is, of course, 
just the direct product projection on the first (leftmost) factor. 

(c) kl: k+lM ---> T(kM) is given by 

kI(Xo . . . . .  Xk+l) ---- (X 0 . . . . .  Xk; Xl . . . . .  Xk+l) 

(Note: kI is a strong embedding because it has a differentiable left inverse 
hk: T(kM) ---> k+lM given by h~(Xo . . . . .  xk; Yo . . . . .  YD = (Xo . . . . .  x~, YD; the 
local version of this in the general manifold setting is the reason those 
embeddings are always strong.) 

(d) k'tr = "rr k o kl: k+lM -"> kM is given by 

k~(x0 . . . . .  xk+l) = (x0 . . . . .  xk) 

I f N  is an open set in a Banach space C and if F: M --4 N is differentiable, 
then the sequence of differentiable maps kF: kM --> kN develops inductively 
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as follows: Define a sequence of (differentiable) maps Fj: JM ~ C by Fo(xo) 
= F(xo), and 

Fj+l(Xo . . . . .  xj+O = O(Fj)(Xo . . . . .  x j ) ( x l  . . . . .  Xj+l) 

where D denotes the total differential operator for a function. Then kF(x0, 
. . . .  Xk) = (Fo(xo) . . . . .  Fg(xo . . . . .  xk)). 

If f is a differentiable K-curve in M, then (k -> 1) 

f~k)(t) = ( f ( t ) ,  d ld t [ f ( t ) ]  . . . . .  dk ld tk[ f ( t ) ] )  

Thus, a k-suitable ~ = f~k) always represents a coherent progression of motion 
states under the physical interpretation above, whereas a general ~ does not. 

A general differentiable vector field V over kM takes the form 

V(x0 . . . . .  xk) 

= (Xo . . . . .  Xk; Go(Xo . . . . .  xk) . . . . .  Gk(Xo . . . . .  xk)) 

where each Gi is a differentiable function from kM to B. With k ~ 1, V is 
k-suitable if and only if Gi(xo . . . . .  xk) = xi+l for each i = 0 . . . . .  k - 1. 
Thus, for a k-suitable V, ~ = f~k) satisfies ~' = V o ~ if and only if 

dk+lldtk+l[f(t)] = Gk ( f ( t )  . . . . .  dk ld t k [ f ( t ) ] )  

which agrees with the classical formulation. 
Finally, to describe the strong embeddings q~k and T(q0k) for k >-- 1, we 

adopt an numerative, binary indexing scheme for elements in the higher 
differential level full tangential extensions TIn(M).  Thus, (x0; xO E T ( M ) ,  

(Xo0, xol; Xl0, Xll) E T2(M), (Xooo . . . . .  Xlll) ~ T3(M), etc. 
Now each q~k: kM ~ T k ( M )  is the restriction of a continuous linear map. 

Using this fact, one can show (inductively) that q~g: kM - ~  T k ( M )  is given by 

q)k(Xo . . . . .  Xk) -~- (Xo... 0 . . . . .  Xil . . . i  k . . . . .  X t . . . 1 )  

where Xi~...ik = Xj if and only if il + " '"  + ik = j .  It follows that (Xo...0 . . . . .  
xi~...ik . . . . .  Xl...l) ~ k M  if and only i f  xir..ik = Xj~...jk whenever il + "'" + ik 

= Jl + "'" + jk" Similarly, (x0...0 . . . . .  xir..ik+l . . . . .  x l . . . l )  ~ k M '  if and 
only i f  Xoi2...ik+~ = Xoj2...jk+t and Xli2. . . ik+l  = Xlj2. . .Jk+l whenever i2 + "'" + ik§ 

= J2 + "'" + jk+l. 

E x a m p l e  2. Higher Order Lagrangian Hamiltonian Structures. How one 
best defines (more importantly, how one der ives )  these objects depends on 
one's purpose. However, if k > 1, there is always a difficulty concerning k- 
suitability of the Hamiltonian vector field defining the equation of motion. 

Namely, regard Q, T(Q),  and T2(Q) as subsets/submanifolds in T k- I (M) ,  
T k ( M ) ,  and Tk+l(M),  respectively. Let V = VL: T(Q)  ~ T2(Q) be the Hamilto- 
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nian vector  field associated with a regular Lagrangian L over  Q. It is a 
standard theorem in mechanics  (see Abraham,  1967, p. 122, for a proof)  that, 
in our language, V is automatical ly  1-suitable. Thus, if  g: U ~ T(Q) is any 
differentiable curve satisfying g '  = Vo g, then g has the fo rm g = h ' ,  where  
h lies in Q. However ,  there is no assurance that h itself has the fo rm h = 
f tk- l l ,  where f l i e s  in M. Thus, g does not necessari ly represent  the kth-order 
differential lift of  a mot ion curve in the underlying posi t ion/configurat ion 
manifold  M. 

Indeed, f rom the discussion preceding Theorem 2, for V as above to be 
k-suitable, it is necessary and sufficient that T(Q) C_ kM C Tk(M). Unfortu-  
nately, if  k > 1, one can never  have all of  T(Q) realized as a subset /submanifold 
in kM, unless Q is discrete (singletons are open sets). 

For suppose T(Q) C_ ~M, and consider (Theorem 1) the subset /submani-  
fold P = q~k-I(T(Q)) in kM. Let  Q = k-17r(P) in k- lM.  One has 

~Pk-l(Q) = (q~k-I o k_l,a-)(p) = (Trk-1 o q0k)(p ) 

by part  (2) o f  Theorem 1. But the latter quantity is equal to ark-t(q% 
(~p~-I(T(Q)))) = ~rk-l(T(Q)) = Q. That is, Q = q~-Jl(Q) is necessari ly a subset/  
submanifold  in k-~M. On the other hand, one has 

T(-O) = T(q~k21)(T(Q)) = T(q~tr I(T(Q)) = T(q%_ 1)- l ( q ) k ( P ) )  

= T(q~k - l ) -  1 ( [ T(q% _ 1 ) o k - 1 I ] (P)) = k - 1 I(P) o k- 1 l(kM ) 

Thus we have both Q c k - l g  and T(Q) C k_lI(kM) C T(k-lg). 
N o w  let u E T(Q).  Let 0: X --~ Y be a local coordinate chart for M, 

where X is open in M and where  Y is open in the Banach space B. The 0 
gives rise to coordinate charts: 

k - l o :  (0,/t" . . . . .  k_2,n-)-l(x) --~ y • B ~-I 

and 

T(k-10): (0"n" o . . . .  k _ 2 q  T o TI 'k-I) - I (x)  --~ ( y  • B k-l)  • B k 

for  k - lM and T(k-IM), respectively. We can assume u E T(Q) Cl (oar o . . .  
o k_2,Tr o T l ' k - l ) - l ( x ) .  

Since, by assumption,  u ~ ~_ll(kM), it fol lows that T(k-lO)(u) has the 
form (Y0 . . . . .  Yk-1; Yl . . . . .  Yk-~, Yk). But, for any nonzero,  nonunity real 
number  h, one must  also have (Y0 . . . . .  Yk-l; hyl . . . . .  hyk-1, hyk) in 

T(k-10)(T(Q) f) (oar o . ' .  "rrk_2 o . r rk- l ) - l (x))  

Since T(Q) C ~_ll(kM), we are forced to conclude hyl = Yl . . . . .  hyk- l  = 

Yk-b  whence 0 = Yl . . . . .  Yk-1. 
Now let e = e(t) = (eo(t) . . . . .  eg-i(t)) be a differentiable curve with 

e ' (0)  = T(k-10)(u) = (Y0, 0 . . . . .  0; 0 . . . . .  0, Yk), and with e(t) ~ k-~0(Q) 
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for all t sufficiently near 0. The argument given above for the form that 
T(k-IO)(u) must take also applies to any v E T(Q) if v is taken sufficiently 
close to u. It follows that any z ~ Q sufficiently close to k-~O(u) has k-~0(z) 
in the form (z0, 0 . . . . .  0). In particular, for all t sufficiently close to 0, e(t) 
= (eo(t), 0 . . . . .  0). Thus, dldt[ek-I(t)]lt=o = Yk = 0. In summary, u is 
necessarily a zero tangent vector. The only way this can happen, since u is 
arbitrary in T(Q), is for Q to be a discrete manifold to begin with, whence 
Q = ~Pk-l(Q) is a discrete manifold as well. In brief, with k > 1, the only 
way to have all of T(Q) contained in kM is to have Q discrete. 

We pursue the analysis (k > 1) directly in the Bowman context. Namely, 
suppose the regular Lagrangian L is defined as a function from T(k-lM) to 
R. Let V = VL: T(k-IM) --+ T2(k-~M) be the associated Hamiltonian vector 
field (defining the equation of motion). Let P be any subset in T(k-~M). To 
say that V is k-suitable over P is to say that, for any differentiable K-curve 
g in T(k-~M) lying entirely in P with g '  = V o g, g has the form g = k-~l 
o f(k), where f lies in M. We say that V is completely integrable in P if, for 
each s ~ K and each p ~ P, there is a differentiable K-curve g in T(k-~M) 
lying entirely in P, with g(s) = p and with g '  = V o g. 

Theorem 3. (1) I f  V(P) C_ T(k_ll)(T(kM)), then V is k-suitable relative 
to P and P C_ k-ll(kM)" 

(2) If  V is k-suitable and completely integrable relative to P, then V(P) 
C T(k_ll)(T(kM)). 

Proof (1) Let x: T2(k-IM) = T(T(k-IM)) ----) T(k-IM) denote the tangent 
bundle projection. We show first that P C_ k_ll(kM). Let p E P, and let x 
T(k-IM) with V(p) = T(k-ll)(x). Then we have 

p = (T o V)(p) = x(V(p)) = '7(T(k_lt)(X)) = k_ll(Trk-l(X)) 

whence p E k-lI(kM). 
Next, let g: U -+ T(k-~M) be a differentiable curve lying entirely in P 

with g '  = V o g. Since V is known to be 1-suitable, g = (It k-~ o g) ' .  Now 
"rr k-1 o g is a differentiable curve in k-~M with ('rr k-~ o g) '  = g entirely in 
k_ll(kM), since P C k_~l(kM). Thus, by our k - 1 suitability criterion in the 
Bowman context, ('rr k- ~ o g) --- f~k- ~), w h e r e f  lies in M. But then, by definition 
o f f  (k), we have k- t l  ~  (k) = ( f ( k - l ) ) t  ~_ ( , .ffk-I o g), = g, whence g is a k- 
suitable curve. Thus, V itself is k-suitable relative to P. 

(2) With p ~ P and with s ~ K, consider the initial value problem (V, 
s, p). By complete integrability, there is a differentiable solution curve g in 
T(k-~M) lying entirely in P. By k-suitability this curve must have the form 
g = k- z I o f~k), where f lies in M. Then we have 

V(p) = V(g(s)) = g'(s) = (k-l I o f<k))'(S ) = T(k- l l)((f~k))'(S)) 

whence V(p) C_ T(k_ll)(T(kM)). 
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Corollary. Let P be a strongly embedded, V-invariant subset/submanifold 
in T( g- ~M). Then V is completely k-integrable relative to P if and only if 
V(P) C T(k_II)(T(*M)). 

Proof. To say that P is V-invariant is to say that V(P) C T(a)(T(P)), 
where i: P --~ T(k-IM) is the inclusion map. Since i is a strong embedding, 
so is T(i), whence V pulls back to a differentiable vector field Vp: P ---> T(P). 
By smoothness alone (the fundamental existence/uniqueness theorem) Ve is 
completely integrable, whence V is completely integrable relative to P. Then 
the assertion of the corollary follows immediately from Theorem 3. 

Note. Theorem 3 and its corollary apply to any 1-suitable V defined 
over T( k- ~M), whether or not Vis derived from a regular Lagrangian function. 

Again with V = VL, the Corollary does  not reveal that the matter of  
finding a submanifold P as indicated can be formidable. To see the nature 
of the difficulty in its general  form, one must work through the local (finite- 
dimensional) derivation of VL. Without going through this, however, it is 
relatively easy to see, for instance, why (k > 1) VL is not necessarily k- 
suitable relative to P = k_tl(~M) in T(k-lM). 

Namely, let M = R, whence k-l M = Rk, T(k-lM) = R k • R k, and kM 
= R k+~. Let L: R k • R k --~ R be the (kinetic energy) Lagrangian L(uo . . . . .  
uk-l; Vo . . . . .  vk-1) = �89 y" v} associated with the standard Riemannian metric 
over R g. One can develop VL through the Legendre transformation (essentially 
an identity map), the fundamental l-form on T*(Rk), etc., the result of  which 
is that VL is given by 

VL(uo . . . . .  u k - l ,  Vo . . . . .  Vk-l) 

= (Uo . . . . .  uk-l ,  Vo . . . . .  vk-l; Vo . . . . .  vk-l ,  0 . . . . .  O) 

It is easy to see that the solutions g to y '  = VL(y) are all functions of the form 

g( t )  = (go(t) . . . . .  g ~ - l ( t ) ,  ho(t)  . . . . .  hk_~(t))  

where hi(t) =- Bi and gi(t) = Bit 4- A i for i = 0 . . . . .  k - 1. Obviously, g(t) 
= f ' ( t )  = (f(0;  d/dt[f(t)]), where f ( O  = (fo(t) . . . . .  A-~(t)) with f ( t )  = Bit 
+ Ai. But it is equally obvious, since k > 1, that f itself is not generally of  
the form 

(e(t), d/dt[e(t)] . . . . .  d k-l/dt*-l[e(t)]) = e(k-l)(t) 

Moreover, the k-suitability criterion established by Theorem 3 (and its corol- 
lary) fails dramatically for P = k-tl(kM). 
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For, by linearity of k-~l, one easily calculates that 

T ( k - t I ) ( T ( k M ) )  

= {(ro . . . . .  rk-l ,  rl . . . . .  rk; SO . . . . .  Sk-1, Sl . . . . .  Sk): 

each ri, si ~ R} 

It follows that VL(uo . . . . .  Uk-l, Ul . . . . .  Uk-1, Vk-t) is in T(k_I I ) (T (kM))  if 
and only if 0 = u2 . . . . .  Uk-1 = Vk-~. 

On the other hand, suppose we let 

P = {(Uo, Ul, 0 . . . . .  0; ui, 0 . . . . .  0) ~ T(k-lM): Uo, ul ~ R} 

Clearly P is a strongly embedded subset/submanifold in T( k- ~M). It is easy 
to see that T(P),  viewed as a subset/submanifold in T2(k - IM) ,  consists of all 

(Uo, ul, 0 . . . . .  0; Ul, 0 . . . . .  0; Wo, w~, 0 . . . . .  0; wl, 0 . . . . .  0) 

where Uo, ul, Wo, wt are in R. Then P is VL-invariant [VL(P) C_ T(P)] and 
VL(P) C T(k_11)(T(kM)) ,  since 

VAuo, u~, 0 . . . . .  0; ul, 0 . . . . .  0) 

= (Uo, Ul, 0 . . . . .  0; ul, 0 . . . . .  0; Ul, 0 . . . . .  0; 0 . . . . .  0) 

Thus, by the Corollary, VL is both completely integrable and k-suitable over P. 
We can, of  course, verify the foregoing assertion directly. Indeed, con- 

sider an initial value problem (VL, s, (Uo, ul, 0 . . . . .  0; u~, 0 . . . . .  0) over P. 
The solution curve g is given by 

g(t)  = (ul t  + (Uo - uls),  ul, 0 . . . . .  0; ul, 0 . . . . .  0) 

Then g(t)  = f ' ( t )  = (f(t); dldt[f(t)]) ,  wheref ( t )  = (ut t  + (Uo - UlS), Ul, O, 
. . . .  0). Finally, f ( t )  = g~k-t)(t), where go(t) = ult  + (Uo - uls).  

Note.  In general, P satisfying the terms of the Corollary, when it can 
be found at all, will not be unique. Nor, absent deeper restrictions on L and 
M, can one expect P to be determined in some canonical fashion. Nevertheless, 
specification of  an appropriate P is clearly a prerequis i te  to a serious consider- 
ation of  higher order Lagrangian/Hamiltonian structure. 

C O N C L U S I O N S  

1. The essence of Theorems 1 and 2 (and the associated propositions 
and corollaries) is that the Bowman (restricted) tangential framework, and 
not  the full iterated tangential context, is the "correct" one for treatment of 
higher order differential lift equations. The result follows just from the behav- 
ior of  successive curve lifts. The fact that the Bowman context captures 
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every k-suitable higher order equation can be traced directly to the result 
(Proposition 1) that k M '  behaves as though it were the tangent bundle manifold 
over kM. 

2. By Example l, the Bowman context lends itself directly to an interpre- 
tive scheme: position, position/velocity, position/velocity/acceleration, etc. 
Thus, motion problems are readily treatable in this context. 

3. As Example 2 shows, extending Lagrangian/Hamiltonian structures 
to higher differential levels (third-order, fourth-order, etc., differential lift 
equations) is not a simple matter if one wishes to retain the property that 
solution curves must always arise as differential lifts of curves in the underly- 
ing base manifold M. The Corollary to Theorem 3 stands as an unavoid- 
able challenge. 
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